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In this report, an algorithm for adaptive
. control of continuous time single-input single-

. output systems is presented. With the hybdbrid
approach, the control structure involves a
continuous as well as a discrete time part,
instead of being totally discrete or totally
continuous as in previous approaches.

The system {s sampied and the adaptive gains
updated at a variable rate varying with the
magnitude of the error itself.

Introduction

The theory and application of Adaptive
Control Systems have been a center of discussion
in the last few years. Continuous-time [1]. Es}.

71, [8], as well as discrete-time [2], [5]), [9],
10} schemes have been devised, and stability has

: been .
1 In spite of the continuous-time nature of
T real systems, from a point of view of appiica-
tions, discrete-time algoritims are preferred to
continuous-time, due to recent advances in digital
technology.

However, the discrete approach is not closely
coupled to the continucus-time behavior of real
plants, making a “hydbrid” approach (partly dis-
crete, partly continuous) desirable. It is a well
known result [1], [6]), that, for a given plant,
poles and zeroes can be arbitrarily placed with
appropriats compensators as in Fig. 1. If the
plant parameters are known exactly, then the
control input which gives the desired behavior is
of the form T

u(t) = ko7 g(t),
¢(t) being fTitered versions of the plant input
and output, and X* an array of constants. In
case of plant unknown, or partially known, the

e
In the hybrid scheme which will be

subject of this paper, the set of parameters K(t)
are updated by a digital computer at discrets
intervals of time {tk}, and the continuous-time
nature of u(t) 1s preserved.

The overall schame of the contro) system s

i shown in Fig. 2. .
} | Recently, hybrid algorithms for adsptive

il
B 4. rrto, v,

82 11

MODEL REFERENCE ADAPTIVE CONTROL SYSTEMS: TME NYBRID APPROACH

R. Cristi, R.V. Monopoli

Electrica) and Computer Engineering Department
University of Massachusetts
Amherst, Massachusetts

control [4] as well as self-tuning regulators [11],
have been devised. In [4] the adaptive rim K(t
are discretely updated at a fixed rate, in base
of samples taken from the plant in 2 random
fashion.

It turns out that the sampling scheme is
crucial in order to establish stability of the
closed loop system. In this paper, the system
is sampled, and the adaptive gains updated, at a
variable rate asccording to the magnitude of the
continuous time error itself. It is showm that
the continuous time error becomes smaller than
any bound, arbitrarfly determined, after a finite
number of adaptation steps.

The problem 1s stated in Section 1, with the
error model {n Section 2. The adaptive law is
discussed i{n Section 3, and Section 4 describes
the sampling scheme, with proof of stability.

Notation

The following notation will be used:
- vectors: a ® [lg'lz- R A
- time delay operator: 2; d
- differential operator: p = gr
- x{t) = O[y(t)] 1£f there exists & positive
constant M such that |x(t)] < Riy(t}|,

O obie 1e¢ [x(e)] < sV

- = 0 x <

:o: some :mct";on(:)t) such that ﬂt}-ﬁ;
0. 5&1:);: X

17;

- xi = 0[y(t)] and
T { denotes L.place Transform operation.

). S 14

A continuous time dynamic system (plamt) can
be described by the linesar time invariaat, non-
autonomous differential equation

(1.1) Dplp) x(t) = Bylp) u(t) .

with Dplp) = ph & a1 ¢ (. ¢,

Dy(p) = bop® + bypi=1 ¢ ... ¢ by
The following assumptions are made o8 the

lant tors:

?1) “&s of a , 1s1, ..., N and by, 10,
o o0 0 i ] .n m;

mi)) :m: :;ngimn phase; 1.0., the poly-
nomtal Dy(p) 1s Werwitz;

(1v) the sign of by s known, as are bownds don

Approved for pudblic release
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~ and b, whare box > by > boa.
¥ithout 1mofmuty.u,>om1 be
W

(1-2) lh(p) h(t)“‘ Kor(t),

with Og(n) = pit + aqiph=1 + ... '+ agn, Nurwitz,

ﬂndai Qcﬁnisuuw'mmmimtn
untu( such that, for some Eo > 0, tp > 0

(1 3) |e(t)|5 Eo, for every t , tr,

(1.3') o(t) § na(t) - x(t)

In particular, we restrict the input u(t) to be of

the form n
(1.8) u(t) = ; Ki(K)p1(t), for teltys tyei)

whare K (k), is1, 2, ... n is a sat of gqains
updated only at discrete {nstants {ty}, and »¢(%)
are continuous time, observable state varfables of

the systam.
o r 1

It has been shown in [1] that constant
vectors Sy and gx exist such that
(2.1) lh(l')t(t) = Dw(p)(-bout(t) + 8y h(t) +
- B n(t) + Koaolt)]
where the fo) M defint ens p.min:
- Dy{p) B CiptC + ... + oy fs 2
Hurwi tz polym-m such that n..(p) s Strictly

Positive Real (S.P.R.); °
- ug(t) 1s such that Op(plug(t) = u(t) where

O(p) = pa-1 & g ph-=2 4 +F,,_.. fs any
Ilunrltz lenuhllof mm n-n- !
solutions of

%‘D)Df(a)tu‘(t) = v u(t).
«ss N=] are solutions of
T Rt e
- #g(t) s solution of Dy (pley(t) = r(t).
If we choose Op(p) = (p*a)Oy(p), with s > 0, 2

sequence ( and
(2. z)q‘up(e) . Q.T(k)g,l(t) * KT(K)g(e) +
k)‘g(t) * t), for tc[tg. tbﬂ)o
we can write

3
(2:3) (prade(t) = ¢ Ttklg () + 8, TCKIg (e)e
(2) ~ Som (S, for Saltgs ot

hou-.i-m.o

:.(k)
where §4(k)
Kg(k) will be

In what fonm. the sequencas

" called the mptm Gains, and will be updated u' :

the sempling” instants (Cy} onl Fyrtherwore,
1nput ..(:)"2.. to be a&mu‘ such thet (1.3) u

- satisfled
1f (2.3) fs sampled st instants (ty}, the
m‘u«mmmnmum {near,

ol c(e.) . Ago(tm) * g,"(n-i ), (x) +
o T(he1)g,(K) + 8(k=T)og(k) = Dod1(K)

where va
Tl . '« e..’
o exp(-aTy);
(3 5) §g(k) = I‘(t‘) * Moy ,l’“._').

J ® 0,013

" with n(K)
©(2.6)

whare

~ which is the augmented error equation.

3 = oux;

(pra) g4(t) = gy(t),
¥ (k) 'L: oxp -a(ty-t)wi(r)d(x)

ntroducing the mﬂur{ network
(2.6) y(k) = Agy(k-1) + q(k) + w(k)
§ o(ty) + y(k), squattons (2.4) and

N’ 2 = Agalt=1) + (k) 3) + (k)
' 3@1 o Sat) L0 E

T T T .
LIRS
(28] 5 3 T LM k]

M
.(u) * Ky (k1) (K),

then { T
210" 500 a(ke1) + 8701 3000
:w““)"‘l(k) +q(¥),

. tive

The equations in the previous section hold
for any sampling sequence (ty}, on which no
hypothesis has been made so far. :

If we suppose (ty} be a sequence with an

. infinite number of elements, then it 1s a well
- known result--[2], [3]-uut equation (2.10) and
© the following

k) = §(k-1 .r. k) n(k) .
6.0 48 2 85T 3.(25
Sw(K) -s..(k-n + Ly (k) n(k)

" with F = diag (37 129,0), v > 1/2mn (Aq A,)s
" Y4s Yy > 0, yleld (§(k)} be a uniforaly bounded
tnd movreover

(3.2) 1im n{k) =0
koo

(3.3) Mm §(k) n(k) = 0
o

Let define the trol faput
“Ba) ue) = (k) olt) te [tes tyop)

where
(3.9) g(t)- nem-1) g_(t);
Bt "-ﬂz) .°§§<J by RO

t‘ko 'ﬂ])v
:uieh. hgulm- m.n (z.s). gives the remining

et s,(:; a,m - XT(xe1) §(x)
(3.8) dglk) A op ~s(te-t) up(t) ¢x.




A sufficient requirement on the saspling
can be stated as follows:
4.1. Lot the sampling sequence {m have
such that

n mmber of terms, and be
(4.1) sup [o(s)( = Otrzlc(tn)ﬂ-

Tmmnyb:ﬁ systam described in the previcus
sactions is urmlr-l stable and
(4.2) H-c(q, =0

Proof: mm]

The cantral idea contained in: Theorem
that stability of the oversll system is ga
1f the sampled error {(e(tx)} grows at the

rats as the continuous time error 1tulf-u
stated in (4.1).

Notice that the random 21 ng scheme
discussed fn (4] satisfies (4.1)--as in {4, leam
4 then can be fwplemented to obtain
stability in an almost sure sense.

In what follows a variable rate sampli
schame will be discussed, in which the sampling
ingstants are detarmined by the comparison of a
:ﬂe;;d version of the error with the error

m .
Let ¢(.) be such that

(4.3) «(t) § ¢ ¢ eMtet) | ofz)|de

a1 1s
renteed

th
(4.4) 0 <cy <2 <Refaql, tol, ..., 201,

and (aq, tsl, 2n=1} zZeroes of the
Hurwitz polynomial n.(s”%y(s)m(s) Then the

following can be proved:

22, If the sampling sequence (tx} 1s

(4.5) tg.] * min ttllo(r)l> mx (Ey, ¢(t))}
20 +T

mnaz.u 3,.nimg.mn mum. and .( ) -

discussed in tlnpmim uctfm m the
IIM

properties
m error |e(- )l 1s uniformly bounded;
H the sampling sequencs {tx} is a finite

m
111) an fnstant t¢ exists such that
(4.6) Je(t)]| < €y, for every t > tg.

Safore going fato the mﬂs of this Theorem
soms tachnical lemms need to be proved. An
example of sequenca as in (4.!) is shom in Fig.

% If the ervor L grows without
(tx)} as in (4.8) u ™ 1mn1h

m ( ) 1s a finite sequencs. Then
such that
(¢.7) Mt)l < mx (fg, e(t)), for DYET.
Combining thris with (4.3) we chtain, for DY
4.8) &{t) <~ A 2 [ ] s & t
LR ‘u.a).‘d.nf'u Sk
the error growing witheut bounds.

In the following lemms, further results are

obtained
1s the case

“mmm
o infinite sequence of

unbounded. 1f this
instants -

{g4} exists such that
TS Jetep) - s Ja(e]

3
0 < jolgg)| < |e(gge1)|
Moreover, let us defing a sequence of
integers { {k¢} M tuat

* with {o m (4.5)

Then we can prove the followi

L e 4.2, mm)uin (6.)0)nun-r1u

DAaN) Jeltyg)] 2
. forse-mtantn.,»o. 2 as in (4.4) and

o e-3Tky fe(eg)

Tk - tk g1
. The “ﬂl‘lf‘fﬂ of (tk} tn (4.5) fwplies
{nstant

(4.lzm(tu)l > e(tx).
Cosbining this with (4.3) we obtain

(4.13) [o(tug)f 2 ¢q e-AThg j g la(e)dr.
L IR
The auptivo aim being bounded and the mr
gminz A |'(t)| "‘.l:: m'ﬂrquntiu
‘for some positive mtant‘h‘.
(4.15)f & {e(x) (de ?_%lin ('T' Tk. ) |C(€j)|.

Fﬂuny. inequalities (4.13), (4.15) and
Temma.

* Teg 2T prove the

F 5,3. 1f the error nitmut bound then
g} is unt y bounded.
ons (1.3), (2 4}, (2.7) the

' sql;d error at instant txg satisfies the equation

(4.16) ltny) = €=TkS a(tyy-1) - alky) o
.-*k: n(kg=1) + w(kg) + v]1E(Kkg) |12 mikg)

It 1s showm fn [12] that
- (817) wlkg) + v ||8(kq)||2nkg)| < 8(5)]e(x;)]

for some sequence {8(J)} such that 1im s(J}~0.
sofirtharmre, b (4.10), (4.9) d (4.11), the
Rty ’Tc(tk‘.ﬂl < lc(q)l k, ¢TgleCty)]
a1 cquations (4.16), (4.17), (40) v
@9 feteagt <ff I ¢ st} ety

* la(t;)l + |n(kg=1)]

- ] (X remlt in (3.2),
e p KR AN Ao .'i--- g

follows from teequaltty (4.19).

e e
i in (4.10) 1s an infinite sequance, and by

saplied ervor satisfies
(4.1 . M‘ 4.1 mm the error
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et

4.1 equa .2) holds, which
contradicts with the fact that (:”)hsyom
k. Them {tx} cannot be an {atinTte sequenmcs.
Finally {11) comss from the fact that, by i1),
an exists such tlnt

instant t*
.{4.20 o(t)lcnx( » et ;’mmbt"

(l'g- c(t)). L

Q€D

An algorithm for hybrid adaptive control for
siaglo::put single~cutput systamt has been

The gaing are updated at a variable rate, and
the winimm tims batween samples can be set
arbitrarily large. Untform stability of the
closed loop system fs quaranteed, and the magni-
tude of the error can be driven smller than an
arbitrary threshold, in a finita number of adap-
tation steps.

Nothing Msnmuidonunnrfomof
th. al rmu in presence of disturbances and

unmodeled dynamics, which {s the subject of
current research.
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